Characterization of the relationship between polar and lateral flagellar structural genes in the deep-sea bacterium Shewanella piezotolerans WP3

نویسندگان

  • Huahua Jian
  • Han Wang
  • Xianping Zeng
  • Lei Xiong
  • Fengping Wang
  • Xiang Xiao
چکیده

Bacteria with a dual flagellar system, which consists of a polar flagellum (PF) and several lateral flagella (LF), have been identified in diverse environments. Nevertheless, whether and how these two flagellar systems interact with each other is largely unknown. In the present study, the relationship between the structural genes for the PF and LF of the deep-sea bacterium Shewanella piezotolerans WP3 was investigated by genetic, phenotypic and phylogenetic analyses. The mutation of PF genes induced the expression of LF genes and the production of LF in liquid medium, while the defective LF genes led to a decrease in PF gene transcription. However, the level of PF flagellin remained unchanged in LF gene mutants. Further investigation showed that the flgH2 gene (encoding LF L-ring protein) can compensate for mutations of the flgH1 gene (encoding PF L-ring protein), but this compensation does not occur between the flagellar hook-filament junction proteins (FlgL1, FlgL2). Swarming motility was shown to specifically require LF genes, and PF genes cannot substitute for the LF genes in the lateral flagella synthesis. Considering the importance of flagella-dependent motility for bacterial survival in the abyssal sediment, our study thus provided a better understanding of the adaptation strategy of benthic bacteria.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: Environmental Adaptation: Genomic Analysis of the Piezotolerant and Psychrotolerant Deep-Sea Iron Reducing Bacterium Shewanella piezotolerans WP3

Shewanella species are widespread in various environments. Here, the genome sequence of Shewanella piezotolerans WP3, a piezotolerant and psychrotolerant iron reducing bacterium from deep-sea sediment was determined with related functional analysis to study its environmental adaptation mechanisms. The genome of WP3 consists of 5,396,476 base pairs (bp) with 4,944 open reading frames (ORFs). It ...

متن کامل

Role of filamentous phage SW1 in regulating the lateral flagella of Shewanella piezotolerans strain WP3 at low temperatures.

Low-temperature ecosystems represent the largest biosphere on Earth, and yet our understanding of the roles of bacteriophages in these systems is limited. Here, the influence of the cold-active filamentous phage SW1 on the phenotype and gene transcription of its host, Shewanella piezotolerans WP3 (WP3), was investigated by construction of a phage-free strain (WP3ΔSW1), which was compared with t...

متن کامل

A novel filamentous phage from the deep-sea bacterium Shewanella piezotolerans WP3 is induced at low temperature.

Active filamentous phage particles were isolated from the deep-sea bacterium Shewanella piezotolerans WP3. A putative single-stranded DNA binding protein of the phage was found to be overexpressed at 4 degrees C compared to its expression at 25 degrees C by two-dimensional polyacrylamide gel electrophoresis. Reverse transcription quantitative PCR further revealed that the key genes of the SW1 p...

متن کامل

Genome-Wide Detection of Small Regulatory RNAs in Deep-Sea Bacterium Shewanella piezotolerans WP3

Shewanella are one of the most abundant Proteobacteria in the deep-sea and are renowned for their versatile electron accepting capacities. The molecular mechanisms involved in their adaptation to diverse and extreme environments are not well understood. Small non-coding RNAs (sRNAs) are known for modulating the gene expression at transcriptional and posttranscriptional levels, subsequently play...

متن کامل

The regulatory function of LexA is temperature-dependent in the deep-sea bacterium Shewanella piezotolerans WP3

The SOS response addresses DNA lesions and is conserved in the bacterial domain. The response is governed by the DNA binding protein LexA, which has been characterized in model microorganisms such as Escherichia coli. However, our understanding of its roles in deep-sea bacteria is limited. Here, the influence of LexA on the phenotype and gene transcription of Shewanella piezotolerans WP3 (WP3) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016